Java线程池

java线程池简介

我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?在Java中可以通过线程池来达到这样的效果。Jdk1.5之后加入了java.util.concurrent包,这个包中主要介绍java中线程以及线程池的使用。

线程池是维护了一批线程来处理用户提交的任务,达到线程复用的目的。

线程池的作用

线程池作用就是限制系统中执行线程的数量。根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以开始运行了;否则进入等待队列。

为什么使用线程池

  1. 减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
  2. 可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。

线程池接口

Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService

比较重要的几个类:

ExecutorService 真正的线程池接口。
ScheduledExecutorService 能和Timer/TimerTask类似,解决那些需要任务重复执行的问题。
ThreadPoolExecutor ExecutorService的默认实现。
ScheduledThreadPoolExecutor 继承ThreadPoolExecutor的ScheduledExecutorService接口实现,周期性任务调度的类实现。

线程池有关类之间的关系:

首先:是ThreadPoolExecutor继承AbstractExecutorService,并且有四个构造方法。

1
2
3
public class ThreadPoolExecutor extends AbstractExecutorService {
//...
}

再是AbstractExecutorService实现ExecutorService:

1
2
3
public abstract class AbstractExecutorService implements ExecutorService {
//...
}

接着看ExecutorService接口的实现:

1
2
3
4
5
6
public interface ExecutorService extends Executor {
void shutdown();
boolean isShutdown();
boolean isTerminated();
//...
}

最后是Executor接口:

1
2
3
public interface Executor {
void execute(Runnable command);
}

Executor是一个顶层接口,在它里面只声明了一个方法execute(Runnable),返回值为void,参数为Runnable类型,从字面意思可以理解,就是用来执行传进去的任务的;

然后ExecutorService接口继承了Executor接口,并声明了一些方法:submit、invokeAll、invokeAny以及shutDown等;

抽象类AbstractExecutorService实现了ExecutorService接口,基本实现了ExecutorService中声明的所有方法;

然后ThreadPoolExecutor继承了类AbstractExecutorService。

在ThreadPoolExecutor类中有几个非常重要的方法:

1
2
3
4
5
//execute()方法实际上是Executor中声明的方法,在ThreadPoolExecutor进行了具体的实现,这个方法是ThreadPoolExecutor的核心方法,通过这个方法可以向线程池提交一个任务,交由线程池去执行。

//submit()方法是在ExecutorService中声明的方法,在AbstractExecutorService就已经有了具体的实现,在ThreadPoolExecutor中并没有对其进行重写,这个方法也是用来向线程池提交任务的,但是它和execute()方法不同,它能够返回任务执行的结果,去看submit()方法的实现,会发现它实际上还是调用的execute()方法,只不过它利用了Future来获取任务执行结果(Future相关内容将在下一篇讲述)。

//shutdown()和shutdownNow()是用来关闭线程池的。

四种常见线程池

Java通过Executors提供了四种线程池,这四种线程池都是直接或间接配置ThreadPoolExecutor的参数实现的,在Executors类里面提供了一些静态工厂,生成一些常用的线程池。

newSingleThreadExecutor

创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。

  1. 有且仅有一个工作线程执行任务
  2. 所有任务按照指定顺序执行,即遵循队列的入队出队规则
  3. 适用:一个任务一个任务执行的场景

创建方法:

1
ExecutorService singleThreadPool = Executors.newSingleThreadPool();

源码:

1
2
3
4
5
6
7
8
public static ExecutorService newSingleThreadExecutor() {
//线程池中只有一个线程进行任务执行,其他的都放入阻塞队列
//外面包装的FinalizableDelegatedExecutorService类实现了finalize方法,在JVM垃圾回收的时候会关闭线程池
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}

示例:

1
2
3
4
5
6
7
8
9
10
11
public class MyTask implements Runnable{
@Override
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "正在执行。。。");
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class TestSingleThreadExecutor {
public static void main(String[] args) {
//创建一个可重用固定线程数的线程池
ExecutorService pool = Executors. newSingleThreadExecutor();
//创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口
Runnable t1 = new MyTask();
Runnable t2 = new MyTask();
Runnable t3 = new MyTask();
Runnable t4 = new MyTask();
Runnable t5 = new MyTask();
//将线程放入池中进行执行
pool.execute(t1);
pool.execute(t2);
pool.execute(t3);
pool.execute(t4);
pool.execute(t5);
//关闭线程池
pool.shutdown();
}
}

输出结果:

1
2
3
4
5
pool-1-thread-1正在执行。。。
pool-1-thread-1正在执行。。。
pool-1-thread-1正在执行。。。
pool-1-thread-1正在执行。。。
pool-1-thread-1正在执行。。。

newFixedThreadPool

创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大数量。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。

  1. 可控制线程最大并发数(同时执行的线程数)
  2. 超出的线程会在队列中等待
  3. 适用:执行长期的任务,性能好很多

创建方法:

1
2
3
4
5
//nThreads => 最大线程数即maximumPoolSize
ExecutorService fixedThreadPool = Executors.newFixedThreadPool(int nThreads);

//threadFactory => 创建线程的方法
ExecutorService fixedThreadPool = Executors.newFixedThreadPool(int nThreads, ThreadFactory threadFactory);

源码:

1
2
3
4
5
6
7
public static ExecutorService newFixedThreadPool(int nThreads) {
//corePoolSize跟maximumPoolSize值一样,同时传入一个无界阻塞队列
//根据上面分析的woker回收逻辑,该线程池的线程会维持在指定线程数,不会进行回收
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class TestFixedThreadPool {
public static void main(String[] args) {
//创建一个可重用固定线程数的线程池
ExecutorService pool = Executors.newFixedThreadPool(2);
//创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口
Runnable t1 = new MyTask();
Runnable t2 = new MyTask();
Runnable t3 = new MyTask();
Runnable t4 = new MyTask();
Runnable t5 = new MyTask();
//将线程放入池中进行执行
pool.execute(t1);
pool.execute(t2);
pool.execute(t3);
pool.execute(t4);
pool.execute(t5);
//关闭线程池
pool.shutdown();
}
}

输出结果:

1
2
3
4
5
pool-1-thread-1正在执行。。。
pool-1-thread-2正在执行。。。
pool-1-thread-1正在执行。。。
pool-1-thread-2正在执行。。。
pool-1-thread-1正在执行。。。

newCachedThreadPool

创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程数量做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程数量。

  1. 线程数无限制
  2. 有空闲线程则复用空闲线程,若无空闲线程则新建线程
  3. 一定程序减少频繁创建/销毁线程,减少系统开销
  4. 适用:执行很多短期异步的小程序或者负载较轻的服务器

创建方法:

1
ExecutorService cachedThreadPool = Executors.newCachedThreadPool();

源码:

1
2
3
4
5
6
public static ExecutorService newCachedThreadPool() {
//这个线程池corePoolSize为0,maximumPoolSize为Integer.MAX_VALUE,意思也就是说来一个任务就创建一个woker,回收时间是60s
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class TestCachedThreadPool {
public static void main(String[] args) {
//创建一个可重用固定线程数的线程池
ExecutorService pool = Executors.newCachedThreadPool();
//创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口
Runnable t1 = new MyTask();
Runnable t2 = new MyTask();
Runnable t3 = new MyTask();
Runnable t4 = new MyTask();
Runnable t5 = new MyTask();
//将线程放入池中进行执行
pool.execute(t1);
pool.execute(t2);
pool.execute(t3);
pool.execute(t4);
pool.execute(t5);
//关闭线程池
pool.shutdown();
}
}

输出结果:

1
2
3
4
5
pool-1-thread-2正在执行。。。
pool-1-thread-4正在执行。。。
pool-1-thread-3正在执行。。。
pool-1-thread-1正在执行。。。
pool-1-thread-5正在执行。。。

newScheduledThreadPool

定长线程池。此线程池支持定时以及周期性执行任务的需求。

  1. 适用:周期性执行任务的场景

创建方法:

1
2
//nThreads => 最大线程数即maximumPoolSize
ExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(int corePoolSize);

源码:

1
2
3
4
5
6
7
8
9
10
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}

//ScheduledThreadPoolExecutor():
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE,
DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
new DelayedWorkQueue());
}

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class TestScheduledThreadPoolExecutor {
public static void main(String[] args) {
ScheduledThreadPoolExecutor exec = new ScheduledThreadPoolExecutor(1);
exec.scheduleAtFixedRate(new Runnable() {//每隔一段时间就触发异常
@Override
public void run() {
//throw new RuntimeException();
System.out.println("================");
}
}, 1000, 5000, TimeUnit.MILLISECONDS);

exec.scheduleAtFixedRate(new Runnable() {//每隔一段时间打印系统时间,证明两者是互不影响的
@Override
public void run() {
System.out.println(System.nanoTime());
}
}, 1000, 2000, TimeUnit.MILLISECONDS);
}
}

输出结果:

1
2
3
4
5
6
7
8
================
4590850263504
4592850370330
================
4594850481968
4596850560885
4598850893874
================

ThreadPoolExecutor详解

ThreadPoolExecutor提供了四个构造函数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
//五个参数的构造函数
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue)

//六个参数的构造函数-1
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory)

//六个参数的构造函数-2
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler)

//七个参数的构造函数
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
  • int corePoolSize => 该线程池中核心线程数最大值

    线程池新建线程的时候,如果当前线程总数小于corePoolSize,则新建的是核心线程,如果超过corePoolSize,则新建的是非核心线程

    核心线程默认情况下会一直存活在线程池中,即使这个核心线程啥也不干(闲置状态)。

    如果指定ThreadPoolExecutor的allowCoreThreadTimeOut这个属性为true,那么核心线程如果不干活(闲置状态)的话,超过一定时间(时长下面参数决定),就会被销毁掉。

    很好理解吧,正常情况下你不干活我也养你,因为我总有用到你的时候,但有时候特殊情况(比如我自己都养不起了),那你不干活我就要把你干掉了。

  • int maximumPoolSize => 该线程池中线程总数最大值

    线程总数 = 核心线程数 + 非核心线程数。

  • long keepAliveTime => 该线程池中非核心线程闲置超时时长

    一个非核心线程,如果不干活(闲置状态)的时长超过这个参数所设定的时长,就会被销毁掉。如果设置allowCoreThreadTimeOut = true,则会作用于核心线程。

    jdk中的解释是:当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。什么意思?接着上面的解释,后来向老板派来的工人始终是借来的,俗话说有借就有还,但这里的问题就是什么时候还了,如果借来的工人刚完成一个任务就还回去,后来发现任务还有,那岂不是又要去借?这一来一往,老板肯定头也大死了。

    合理的策略:既然借了,那就多借一会儿。直到某一段时间后,发现再也用不到这些工人时,便可以还回去了。这里的某一段时间便是keepAliveTime的含义,TimeUnit为keepAliveTime值的度量。

  • TimeUnit unit => keepAliveTime的单位

    TimeUnit是一个枚举类型,其包括:

    1. NANOSECONDS : 1微毫秒 = 1微秒 / 1000
    2. MICROSECONDS : 1微秒 = 1毫秒 / 1000
    3. MILLISECONDS : 1毫秒 = 1秒 /1000
    4. SECONDS : 秒
    5. MINUTES : 分
    6. HOURS : 小时
    7. DAYS : 天
  • BlockingQueue workQueue => 该线程池中的任务队列:维护着等待执行的Runnable对象

    当所有的核心线程都在干活时,新添加的任务会被添加到这个队列中等待处理,如果队列满了,则新建非核心线程执行任务。

    常用的workQueue类型:

    1. SynchronousQueue:这个队列接收到任务的时候,会直接提交给线程处理,而不保留它,如果所有线程都在工作怎么办?那就新建一个线程来处理这个任务!所以为了保证不出现<线程数达到了maximumPoolSize而不能新建线程>的错误,使用这个类型队列的时候,maximumPoolSize一般指定成Integer.MAX_VALUE,即无限大。
    2. LinkedBlockingQueue:这个队列接收到任务的时候,如果当前线程数小于核心线程数,则新建线程(核心线程)处理任务;如果当前线程数等于核心线程数,则进入队列等待。由于这个队列没有最大值限制,即所有超过核心线程数的任务都将被添加到队列中,这也就导致了maximumPoolSize的设定失效,因为总线程数永远不会超过corePoolSize。
    3. ArrayBlockingQueue:可以限定队列的长度,接收到任务的时候,如果没有达到corePoolSize的值,则新建线程(核心线程)执行任务,如果达到了,则入队等候,如果队列已满,则新建线程(非核心线程)执行任务,又如果总线程数到了maximumPoolSize,并且队列也满了,则发生错误。
    4. DelayQueue:队列内元素必须实现Delayed接口,这就意味着你传进去的任务必须先实现Delayed接口。这个队列接收到任务时,首先先入队,只有达到了指定的延时时间,才会执行任务。
    5. PriorityBlockingQueue:优先级阻塞队列,该实现类需要自己实现一个继承了 Comparator 接口的类, 在插入资源时会按照自定义的排序规则来对资源数组进行排序。 其中值大的排在数组后面 ,取值时从数组头开始取。

    排队有三种通用策略:

    1. 直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
    2. 无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
    3. 有界队列。当使用有限的 maximumPoolSizes时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。

    BlockingQueue的选择:

    例子一:使用直接提交策略,也即SynchronousQueue。首先SynchronousQueue是无界的,也就是说他存数任务的能力是没有限制的,但是由于该Queue本身的特性,在某次添加元素后必须等待其他线程取走后才能继续添加。在这里不是核心线程便是新创建的线程,但是我们试想一样下,下面的场景。我们使用一下参数构造ThreadPoolExecutor:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    new ThreadPoolExecutor(   
    2, 3, 30, TimeUnit.SECONDS,
    new SynchronousQueue<Runnable>(),
    new RecorderThreadFactory("CookieRecorderPool"),
    new ThreadPoolExecutor.CallerRunsPolicy());

    new ThreadPoolExecutor(
    2, 3, 30, TimeUnit.SECONDS,
    new SynchronousQueue<Runnable>(),
    new RecorderThreadFactory("CookieRecorderPool"),
    new ThreadPoolExecutor.CallerRunsPolicy());

    当核心线程已经有2个正在运行。

    1. 此时继续来了一个任务(A),根据前面介绍的如果运行的线程等于或多于 corePoolSize,则 Executor始终首选将请求加入队列,而不添加新的线程。所以A被添加到queue中。
    2. 又来了一个任务(B),且核心2个线程还没有忙完,接下来首先尝试1中描述,但是由于使用的SynchronousQueue,所以一定无法加入进去。
    3. 此时便满足了上面提到的如果无法将请求加入队列,则创建新的线程,除非创建此线程超出maximumPoolSize,在这种情况下,任务将被拒绝。所以必然会新建一个线程来运行这个任务。
    4. 暂时还可以,但是如果这三个任务都还没完成,连续来了两个任务,第一个添加入queue中,后一个呢?queue中无法插入,而线程数达到了maximumPoolSize,所以只好执行异常策略了。

    所以在使用SynchronousQueue通常要求maximumPoolSize是无界的,这样就可以避免上述情况发生(如果希望限制就直接使用有界队列)。对于使用SynchronousQueue的作用jdk中写的很清楚:此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。意思就是,如果你的任务A1,A2有内部关联,A1需要先运行,那么先提交A1,再提交A2,当使用SynchronousQueue我们可以保证,A1必定先被执行,在A1没有被执行前,A2不可能添加入queue中。

    例子二:使用无界队列策略,即LinkedBlockingQueue

    这个就拿newFixedThreadPool来说,根据前文提到的规则:

    如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。那么当任务继续增加,会发生什么呢?

    如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。OK,此时任务变加入队列之中了,那什么时候才会添加新线程呢?

    如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。这里就很有意思了,可能会出现无法加入队列吗?不像SynchronousQueue那样有其自身的特点,对于无界队列来说,总是可以加入的(资源耗尽,当然另当别论)。换句说,永远也不会触发产生新的线程!corePoolSize大小的线程数会一直运行,忙完当前的,就从队列中拿任务开始运行。所以要防止任务疯长,比如任务运行的时间比较长,而添加任务的速度远远超过处理任务的时间,而且还不断增加,不一会儿就爆了。

    例子三:有界队列,使用ArrayBlockingQueue。

    这个是最为复杂的使用,所以JDK不推荐使用也有些道理。与上面的相比,最大的特点便是可以防止资源耗尽的情况发生。

    举例来说,请看如下构造方法:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    new ThreadPoolExecutor(   
    2, 4, 30, TimeUnit.SECONDS,
    new ArrayBlockingQueue<Runnable>(2),
    new RecorderThreadFactory("CookieRecorderPool"),
    new ThreadPoolExecutor.CallerRunsPolicy());

    new ThreadPoolExecutor(
    2, 4, 30, TimeUnit.SECONDS,
    new ArrayBlockingQueue<Runnable>(2),
    new RecorderThreadFactory("CookieRecorderPool"),
    new ThreadPoolExecutor.CallerRunsPolicy());

    假设,所有的任务都永远无法执行完。对于首先来的A,B来说直接运行,接下来,如果来了C,D,他们会被放到queue中,如果接下来再来E,F,则增加线程运行E,F。但是如果再来任务,队列无法再接受了,线程数也到达最大的限制了,所以就会使用拒绝策略来处理。

  • ThreadFactory threadFactory => 创建线程的方式

    这是一个接口,你new他的时候需要实现他的Thread newThread(Runnable r)方法,一般用不上。

    应该知道AsyncTask是对线程池的封装,这里直接放一个AsyncTask新建线程池的threadFactory参数源码:

    1
    2
    3
    4
    5
    6
    7
    new ThreadFactory() {
    private final AtomicInteger mCount = new AtomicInteger(1);
    public Thread new Thread(Runnable r) {
    return new Thread(r,"AsyncTask #" + mCount.getAndIncrement());
    }
    }
    //就给线程起了个名
  • RejectedExecutionHandler handler => 抛出异常专用

    另一种情况便是,即使向老板借了工人,但是任务还是继续过来,还是忙不过来,这时整个队伍只好拒绝接受了。

    RejectedExecutionHandler接口提供了对于拒绝任务的处理的自定方法的机会。在ThreadPoolExecutor中已经默认包含了4中策略,因为源码非常简单,这里直接贴出来。

    1. CallerRunsPolicy

      线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。

      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   
      if (!e.isShutdown()) {
      r.run();
      }
      }

      public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
      if (!e.isShutdown()) {
      r.run();
      }
      }

      这个策略显然不想放弃执行任务。但是由于池中已经没有任何资源了,那么就直接使用调用该execute的线程本身来执行。

    2. AbortPolicy

      处理程序遭到拒绝将抛出运行时RejectedExecutionException,丢弃任务。

      1
      2
      3
      4
      5
      6
      7
      public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   
      throw new RejectedExecutionException();
      }

      public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
      throw new RejectedExecutionException();
      }
    3. DiscardPolicy

      不能执行的任务将被删除。

      1
      2
      3
      4
      5
      6
      7
      public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   

      }

      public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {

      }

      这种策略和AbortPolicy几乎一样,也是丢弃任务,只不过他不抛出异常。

    4. DiscardOldestPolicy

      如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)。

      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12
      13
      public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {   
      if (!e.isShutdown()) {
      e.getQueue().poll();
      e.execute(r);
      }
      }

      public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
      if (!e.isShutdown()) {
      e.getQueue().poll();
      e.execute(r);
      }
      }

      该策略就稍微复杂一些,在pool没有关闭的前提下首先丢掉缓存在队列中的最早的任务,然后重新尝试运行该任务。这个策略需要适当小心。设想:如果其他线程都还在运行,那么新来任务踢掉旧任务,缓存在queue中,再来一个任务又会踢掉queue中最老任务。

向ThreadPoolExecutor添加任务:

通过ThreadPoolExecutor.execute(Runnable command)方法即可向线程池内添加一个任务。

ThreadPoolExecutor的策略

当一个任务被添加进线程池时:

  1. 线程数量未达到corePoolSize,则新建一个线程(核心线程)执行任务
  2. 线程数量达到了corePools,则将任务移入队列等待
  3. 队列已满,新建线程(非核心线程)执行任务
  4. 队列已满,总线程数又达到了maximumPoolSize,就会由上面那位星期天(RejectedExecutionHandler)抛出异常

总结

keepAliveTimemaximumPoolSizeBlockingQueue的类型均有关系。如果BlockingQueue是无界的,那么永远不会触发maximumPoolSize,自然keepAliveTime也就没有了意义。

反之,如果核心数较小,有界BlockingQueue数值又较小,同时keepAliveTime又设的很小,如果任务频繁,那么系统就会频繁的申请回收线程。